Выработке умения решать задачи рассматриваемого вида помогают так называемые упражнения творческого характера. К ним относятся решение задач повышенной трудности, решение задач несколькими способами, решение задач с недостающими и лишними данными, решение задач, имеющих несколько решений, а так же упражнения в составлении и преобразовании задач.
К задачам повышенной трудности относят такие задачи, в которых связи между данными и искомым выражены необычно, так же задачи, вопрос которых сформулирован нестандартно, например: «Хватит ли 50 руб., чтобы купить две книги по 18 руб. и ручку за 8 руб.?»
Решение задач повышенной трудности помогает выработать у детей привычку вдумчиво относиться к содержанию задачи и разносторонне осмысливать связи между данными и искомым. Задачи повышенной трудности следует предлагать в любом классе, имея в виду одно условие: детям должно быть известно решение обычных задач, к которым сводится решение предлагаемой задачи повышенной трудности.
Многие задачи могут быть решены различными способами. Поиск различных способов решения приводит детей к «открытию» новых связей между данными и искомым.
Работа над задачами с недостающими и лишними данными воспитывает у детей привычку лучше отыскивать связи между данными и искомым.
Полезно включать и решение задач, имеющих несколько решений. Решение таких задач будет способствовать формированию понятия переменной.
Упражнения по составлению и преобразованию задач являются чрезвычайно эффективными для обобщения способа их решения.
Рассмотрим некоторые виды упражнений по составлению и преобразованию задач:
1. Постановка вопроса к данному условию задачи или изменение данного вопроса. Такие упражнения помогают обобщению знаний о связях между данными и искомым, так как при этом дети устанавливают, что можно узнать по определенным данным.
2. Составление условия задачи по данному вопросу. При выполнении таких упражнений учащиеся устанавливают, какие данные надо иметь, чтобы найти искомое, а это так же приводит к обобщению знаний связей между данными и искомым.
3. Подбор числовых данных.
4. Составление задач по аналогии. Аналогичными называются задачи, имеющие одинаковую математическую структуру. Аналогичные задачи надо составлять после решения данной готовой задачи, предлагая при этом, когда возможно, изменять не только сюжет и числа, но и величины.
5. Составление обратных задач. Упражнения в составлении и решении обратных задач помогают усвоению связей между данными и искомым.
6. Составление задач по их иллюстрациям. Они помогают детям увидеть задачу в данной конкретной ситуации.
7. Составление задач по данному решению. Предлагая составить задачу, надо сначала проанализировать данное решение задачи. В отдельных случаях целесообразно подсказать детям сюжет или же назвать величины.
Вывод: Научить детей решать задачи – значит научить их устанавливать связи между данными и искомым и в соответствии с этим выбрать, а затем и выполнить арифметические действия. Для того чтобы научиться решать задачи, надо разобраться в том, что собой они представляют, как они устроены, из каких составных частей они состоят, каковы инструменты, с помощью которых производится решение задач.
Прочие статьи:
Характеристика методов обучения
Рассказ. Рассказ это изложение учебного материала в виде монолога в повествовательной либо описательной форме. Рассказ используется на протяжении всего обучения, меняется лишь его стиль и объем. Как метод обучения рассказ должен соответствовать определенным требованиям: содержать актуальную информ ...
Возрастная периодизация и возрастные особенности средних
школьников
Для правильного управления процессами развития педагоги уже в далеком прошлом делали попытки классифицировать периоды человеческой жизни, знание которых несет важную информацию для посвященных. Есть целый ряд разработок периодизации развития .
Я.А. Коменский был первым, кто настаивал на строгом у ...
Анализ результатов констатирующего эксперимента
В результате применения методики, разработанной Л.Ф. Тихомировой, мы получили следующие результаты исследования: в контрольной группе высокий уровень развития математических способностей имеет 1 человек, выше среднего -2 человека, средний уровень – 10 учащихся, уровень ниже среднего – 5 человек и ...