При сложении и вычитании круглых чисел можно выполнять предметные действия с треугольниками или изображать их в тетради:
+ =
Рис. 1
3 д + 2 д = 5 д. 30 + 20 = 50
При сложении и вычитании двузначных чисел:
– =
Рис. 2
4 д 3 е – 3 д 2 е = 1 д 1 е 43 – 32 = 11
Анализируя аналогичные примеры, учащиеся сами сделают выводы: – при сложении единицы складывают с единицами, а десятки с десятками; при вычитании единицы вычитают из единиц, а десятки из десятков. Работая с такими моделями, учащиеся могут представить наглядно и «изобрести» любой вычислительный прием. Аналогично работа проводится и с трехзначными числами. Сначала внутри треугольника помещаем 10 маленьких треугольников, символизирующих десятки, затем, моделью сотни служит просто треугольник больших размеров. Если при выполнении вычислений возникает необходимость дробления сотни на десятки, то этот треугольник заполняется маленькими треугольниками.
В начальном курсе математики большое внимание уделяется решению задач. Любую задачу можно рассматривать как словесную модель некоторой практической ситуации с требованием дать количественную характеристику какого-либо компонента или установить наличие отношения между компонентами этой ситуации. Наибольшую трудность для учащихся в решении задачи представляет перевод текста с естественного языка на математический, т.е. запись решения. Для облечения поиска решения задачи детей необходимо учить пользоваться вспомогательными моделями: предметами, схемами, таблицами, рисунками. Для установления отношений между величинами, данными и искомыми в задаче, удобно использование в качестве модели линейных схем, которые являются одновременно краткой записью задачи. Еще до знакомства с задачей учащихся нужно учить устанавливать соответствие между предметными, текстовыми, схематическими и символическими моделями, которые они смогут использовать для интерпретации текста задачи. Тогда процесс решения задачи можно рассматривать как переход от одной модели к другой: от словесной модели реальной ситуации, представленной в задаче, к вспомогательной, от нее – к математической. Такие модели в сочетании с заданиями на сравнение, выбор, преобразование, конструирование способствуют формированию умения решать задачи. Например, задания на подбор схемы к тексту задачи, подбор выражения к рисунку, преобразование условия (вопроса) задачи в соответствии с изменением решения и наоборот, и т.п. Использование вспомогательных моделей является средством, которое помогает младшим школьникам усвоить многие математические понятия.
Прочие статьи:
Подбор игрушек для разных возрастных групп
В младших группах должны быть игрушки, обеспечивающие развитие движений и их совершенствование: крупные мячи для катания, перекатывания, бросания; разнообразные цветные грузовики, каталки, тележки.
Сюжетно-образные игрушки (куклы, животные, предметы обихода) по содержанию и оформлению отражают ок ...
Цели коммуникативно-ориентированного обучения
Коммуникативно-ориентированное обучение имеет целью усвоение грамматики и лексики изучаемого языка, но и формирование умений иноязычной коммуникации. Формальные аспекты языка: грамматика, лексика и фонетика представлены в коммуникативном контексте так, что учащимся сразу становится понятным их исп ...
Социологический аспект молодежной
культуры
Приобретение рок-музыкой столь всеобъемлющей популярности имело социологические причины с самого начала.
Во второй половине 20 века молодежь всех индустриально-развитых стран мира вступает в "общество взрослых" существенно иными путями, нежели в предшествующие периоды. Один из традицион ...