Чтобы самостоятельно решать задачи, ученик должен освоить различные виды моделей, научиться выбирать модель, соответствующую предложенной задаче, и переходить от одной модели к другой.
Необходимо отметить, что в данной работе я не касаюсь краткой записи условия задачи. Этот этап очень важен, однако, я исходила из того, что он традиционно присутствует в работе учителя. Поэтому главное внимание я уделяю тем приемам работы над задачей, которые в меньшей степени используются в традиционной системе, которые помогают мне пробудить у детей интерес к задаче, к поиску решений этой задачи.
При решении простых и составных задач на сложение и вычитание используется схематический чертеж.
Схематический чертеж прост для восприятия, так как:
· наглядно отражает каждый элемент отношения, что позволяет ему оставаться и при любых преобразованиях данного отношения;
· обеспечивает целостность восприятия задачи;
· позволяет увидеть сущность объекта в "чистом" виде без отвлечения на частные конкретные характеристики (числовые значения величин, яркие изображения и др.), что трудно сделать, используя другие графические модели;
· обладая свойствами предметной наглядности, конкретизирует абстрактные отношения, что нельзя увидеть, например, выполнив краткую запись задачи;
· обеспечивает поиск плана решения, что позволяет постоянно соотносить физическое (или графическое) и математическое действия.
Как было сказано выше, текстовые задачи на сложение-вычитание в 1-м классе строятся как частные случаи отношения величин, поэтому моделирование простой задачи у детей не вызывало затруднения, т.к. величины в задаче находятся в отношении целого и частей.
Рис.3 Схематический чертеж
Если величины связаны отношением "больше (меньше) на" (Рис. 4.); Сравнение двух величин (Рис. 5.).
Освоение представлений графической, знаково-символической модели в 1-м классе.
Со схемами в системе Д.Б.Эльконина - В.В.Давыдова дети знакомятся с первых уроков, когда находят среди разных предметов одинаковые по какому-либо признаку: длине, площади, форме, объему.
Учащимся выдается набор полосок разных по длине, ширине и цвету. Их задача найти равные по какому-либо признаку. Сразу дети находят одинаковые по цвету, затем, путем наложения, одинаковые по длине. Перед учащимися ставится следующая задача:
Что нужно сделать, чтобы каждый раз не измерять полоски, а найти одинаковые сразу и быстро? Дети предлагают свои варианты: различные значки, но значки должны быть одинаковые, и на одинаковых полосках ставят значки.
А как записать в тетради, что среди полосок есть одинаковые?
Ребята обсуждают задание и приходят к выводу, что нужно зарисовать и поставить значки.
Далее дети выполняют более сложное задание: сравнивают сосуды по объему и находят равные. Равные сосуды необходимо запомнить, а лучше как-то отметить. Опять предлагаются значки.
Затем записывают в тетради с помощью рисунка и значка, что на столе есть одинаковые по объему сосуды.
После этого дети находят сосуды, одинаковые по другим признакам: материалу и высоте. Записывают в тетради, что сосуды равны по высоте с помощью вертикальных отрезков.
На последующих уроках дети с помощью схем учатся находить и определять равные и неравные величины показывать с помощью схем равенство и неравенство величин (Рис. 6).
Рис.6
Через несколько уроков вводится буквенная символика. Все величины обозначаются буквами русского алфавита.
Прочие статьи:
Характеристика выборки и методов исследования
В психолого-педагогической литературе, посвященной проблемам обучения младших школьников, большая роль отводится развитию их математического мышления.
Как показали работы, проведенные под руководством П.Я. Гальперина, Н.Ф.Талызиной, мышление не развивается полноценно без целенаправленного обучени ...
Цель, задачи экспериментального исследования
На основании анализа психолого-педагогической литературы и выдвинутой нами гипотезы, целью экспериментального исследования является изучение особенностей письма у младших школьников.
Экспериментальные задачи:
1. Подбор диагностических методик.
2. Установление критериев оценки выполнения заданий ...
Определение понятия школьной недисциплинированности
О большом практическом и теоретическом значении вопроса школьной адаптации говорит рост числа как отечественных, так и зарубежных публикаций, посвященных этой проблеме. Проблема адаптации детей в школе, причины девиантного поведения постоянно волнуют как педагогов, воспитателей, так и психологов. ...