Модель текста задачи как основа наглядно-образного мышления младших школьников

Новая педагогика » Моделирование текста задачи как средство развития математического мышления младших школьников » Модель текста задачи как основа наглядно-образного мышления младших школьников

Страница 6

Чтобы самостоятельно решать задачи, ученик должен освоить различные виды моделей, научиться выбирать модель, соответствующую предложенной задаче, и переходить от одной модели к другой.

Необходимо отметить, что в данной работе я не касаюсь краткой записи условия задачи. Этот этап очень важен, однако, я исходила из того, что он традиционно присутствует в работе учителя. Поэтому главное внимание я уделяю тем приемам работы над задачей, которые в меньшей степени используются в традиционной системе, которые помогают мне пробудить у детей интерес к задаче, к поиску решений этой задачи.

При решении простых и составных задач на сложение и вычитание используется схематический чертеж.

Схематический чертеж прост для восприятия, так как:

· наглядно отражает каждый элемент отношения, что позволяет ему оставаться и при любых преобразованиях данного отношения;

· обеспечивает целостность восприятия задачи;

· позволяет увидеть сущность объекта в "чистом" виде без отвлечения на частные конкретные характеристики (числовые значения величин, яркие изображения и др.), что трудно сделать, используя другие графические модели;

· обладая свойствами предметной наглядности, конкретизирует абстрактные отношения, что нельзя увидеть, например, выполнив краткую запись задачи;

· обеспечивает поиск плана решения, что позволяет постоянно соотносить физическое (или графическое) и математическое действия.

Как было сказано выше, текстовые задачи на сложение-вычитание в 1-м классе строятся как частные случаи отношения величин, поэтому моделирование простой задачи у детей не вызывало затруднения, т.к. величины в задаче находятся в отношении целого и частей.

pic002.gif

Рис.3 Схематический чертеж

Если величины связаны отношением "больше (меньше) на" (Рис. 4.); Сравнение двух величин (Рис. 5.).

pic003\.gif

Освоение представлений графической, знаково-символической модели в 1-м классе.

Со схемами в системе Д.Б.Эльконина - В.В.Давыдова дети знакомятся с первых уроков, когда находят среди разных предметов одинаковые по какому-либо признаку: длине, площади, форме, объему.

Учащимся выдается набор полосок разных по длине, ширине и цвету. Их задача найти равные по какому-либо признаку. Сразу дети находят одинаковые по цвету, затем, путем наложения, одинаковые по длине. Перед учащимися ставится следующая задача:

Что нужно сделать, чтобы каждый раз не измерять полоски, а найти одинаковые сразу и быстро? Дети предлагают свои варианты: различные значки, но значки должны быть одинаковые, и на одинаковых полосках ставят значки.

А как записать в тетради, что среди полосок есть одинаковые?

Ребята обсуждают задание и приходят к выводу, что нужно зарисовать и поставить значки.

Далее дети выполняют более сложное задание: сравнивают сосуды по объему и находят равные. Равные сосуды необходимо запомнить, а лучше как-то отметить. Опять предлагаются значки.

Затем записывают в тетради с помощью рисунка и значка, что на столе есть одинаковые по объему сосуды.

После этого дети находят сосуды, одинаковые по другим признакам: материалу и высоте. Записывают в тетради, что сосуды равны по высоте с помощью вертикальных отрезков.

На последующих уроках дети с помощью схем учатся находить и определять равные и неравные величины показывать с помощью схем равенство и неравенство величин (Рис. 6).

Рис.6

Через несколько уроков вводится буквенная символика. Все величины обозначаются буквами русского алфавита.

Страницы: 1 2 3 4 5 6 7 8 9


Прочие статьи:

Дидактическая игра на уроке
Историческое образование сегодня – один из наиболее сложных и противоречивых элементов федеральной системы образования. Перед учителем истории он ставит важные цели и задачи, решение которых способствует обучению и воспитанию нового поколения. Так, общей целью исторического образования учащихся явл ...

Роль дифференцированного обучения
Способность размышлять, анализировать, строить планы, создавать разные проекты – очень важные умения, которые в дальнейшем смогут помочь детям самостоятельно принимать решения и действовать в сложных условиях современной жизни. Поэтому, начиная с первых лет обучения, нужно приучить учащихся к самос ...

Обоснование немецкого метода С. Гейнике
Самуэлю Гейнике, основателю сурдопедагогики в Германии, обучение глухих людей устной речи обязано своим дальнейшим развитием и обоснованием. Основополагающий тезис о том, что звуковая речь у глухого связана с речедвигательными ощущениями и может стать для глухого речью с самим собой, т. е. внутренн ...

Меню сайта

Copyright © 2020 - All Rights Reserved - www.rankpedagogy.ru